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1 Introduction

In empirical economic studies VAR models are often used to investigate relationships

between variables. The reader is referred to Lütkepohl (2005) for the various tools

that are commonly used in the context of VAR models. However it is widely known

that a careful analysis relies on a well speci�ed model. For instance Stock and

Watson (1989) or Gonzalo and Pitarakis (1998), among many others, documented

the importance of an adequate choice of the lag length for Granger causality or

cointegration analyses. The dominant tests in the literature are the portmanteau

tests, introduced �rst in Box and Pierce (1970) (BP hereafter) and Ljung and Box

(1978) (LB hereafter), and the Breusch-Godfrey LM test proposed in Breusch (1978)

and Godfrey (1978). These tests for univariate models were extended in the VAR

framework (see Chitturi (1974) for testing the adequacy of stationary VAR models

using the portmanteau test, and Brüggeman, Lütkepohl and Saikkonen (2006) in

the case of cointegrated variables). Such kind of tests are routinely used in softwares

as R, SAS or JMulTi. (see Pfa� (2008) for the implementation in R, or Lütkepohl

and Krätzig (2004) for the software JMulTi).

Let denote by m the number of autocorrelations used in the test statistics (see

equations (2.6), (2.7) and (2.9) below). Hatemi (2004) and Brüggeman et al (2006)

carried out simulation studies to compare the �nite sample properties of the LM

and LB tests. They found that the LM test has a better control of the type I errors

than the portmanteau tests when m is small. On the other hand Brüggeman et al

(2006) underlined that the size properties of the portmanteau tests are better than

those of the LM test when a large m is used. It also emerges from the above studies

that the portmanteau tests are slightly more powerful than the LM test. Bearing

in mind that the alternatives were linear in both papers, the latter result may seem

surprising at �rst sight as the LM test is intended to detect such kinds of alternatives
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by nature (see equation (2.8) below). In this paper we give some asymptotic evidence

for the power comparison between the LM and portmanteau tests. More precisely

it is shown that the LM test is more powerful than the portmanteau tests in the

Bahadur sense. However it turns out that this asymptotic power advantage is at

the cost of the control of the type I errors.

This paper is structured as follows. In the next section, we introduce the port-

manteau and the LM tests. The powers of the studied tests are compared in the

Bahadur sense. In Section 3 Monte Carlo experiments are conducted to illustrate

the theoretical �ndings.

The following notations will be used throughout the paper. For a multivariate

random variable v, let ∥v∥q = (E∥v∥q)1/q, where ∥.∥ denotes the Euclidean norm

with E∥v∥q < ∞ and q ≥ 1. We denote by A ⊗ B the Kronecker product of two

matrices A and B. The determinant of a square matrix A is denoted by det(A).

The vector obtained by stacking the columns of A is denoted vec(A). The symbol

⇒ denotes the convergence in distribution, and we denote by
P→ the convergence in

probability.

2 Testing the lag length of VAR processes

Let us consider the VAR model in its error correction form (VECM):

∆Xt = Π0Xt−1 +

p0−1∑
i=1

Γ0i∆Xt−i + ϵt (2.1)

where ∆Xt := Xt−Xt−1. The Γ0i, i ∈ {1, ..., p0−1}, are d×d short run parameters

matrices. By convention the sum vanishes in (2.1) when p0 = 1. Let us denote by p

the adjusted lag length. In the sequel we assume that X−p, . . . , X0, X1, . . . , XT are

observed.
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Assumption A1

(a) The process (ϵt) is iid with mean zero and positive de�nite covariance matrix

Σϵ, and such that E(∥ϵt∥4) <∞.

(b) The matrix Π0 is of rank 0 < r0 < d, so that Π0 can be written as Π0 = α0β
′
0

where α0 and β0 are full column rank matrices of dimension d× r0.

(c) The autoregressive polynomial A(z) = (1 − z)Id − Π0z −
∑p0−1

i=1 Γ0i(1 − z)zi,

is such that | A(z) |= 0 implies that | z |> 1 or z = 1.

(d) The matrix α′
0⊥Γ0β0⊥ is of full rank d − r0, where Γ0 = Id −

∑p0−1
i=1 Γ0i, and

α′
0⊥α0 = 0, β′

0⊥β0 = 0.

In this paper the cointegrating rank is assumed to be known. Nevertheless this

assumption is not realistic in practice since the cointegrating rank has to be esti-

mated in general. Noting that the e�ects of estimated cointegrating rank on the

lag length selection does not constitute the main scope of the paper, and we simply

refer to Brüggeman et al (2006), Tables 4 and 5, and Figure 2, who studied this

issue. If r0 = 0 the model consists in a VAR for di�erentiated data. If r0 = d the

process (Xt) follows a stationary VAR model. For ease of exposition we will not

consider the r0 = 0 and r0 = d cases. Also we do not consider deterministic terms

in (2.1). However it is easy to see that all the results of the paper can be obtained

in a similar way if r0 = 0 or r0 = d, or when deterministic terms are present. From

A1(b) the system is cointegrated. The α0 and β0 correspond to the adjustment and

long run parameters. Note that α0 and β0 should be identi�ed in some appropriate

way (see Johansen (1995p72). From Granger's representation theorem, the solution

of (2.1) has the following form under A1

Xt = C

t∑
i=1

ϵi + Yt + A, (2.2)
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where C = β0⊥(α
′
0⊥Γ0β0⊥)

−1α′
0⊥. The term A depends on initial values and is such

that β′
0A = 0. The stationary process (Yt) is of the form

Yt =
∞∑
i=0

φ0iϵt−i,

where C(z) =
∑∞

i=0 φ0iz
i is convergent for | z |≤ 1 + δ, for some δ > 0. The

stationary process (∆Xt) can be written as

∆Xt =
∞∑
i=0

ψiϵt−i, (2.3)

where the ψi's can be obtained from (2.2).

For the adjusted lag length p that could be p ̸= p0, the model (2.1) is estimated

by maximum likelihood (see Johansen (1995)). If we suppose that the lag length

is well adjusted, the estimator obtained for vec(α0,Γ01, . . . ,Γ0p−1) is consistent in

probability and
√
T -asymptotically normal. On the other hand the estimator β̂ of

β0 is such that T (β̂ − β0) = Op(1), so we can suppose the long run parameters

known without a loss of generality. The resulting residuals will be denoted by ϵ̂t.

The adequacy of the adjusted lag length is usually checked by testing the following

pair of hypotheses

H0 : γm = 0 vs H1 : γm ̸= 0,

where γm = vec
{
(E(ϵtϵ

′
t−1), . . . , E(ϵtϵ

′
t−m))

}
for m ∈ {1, . . . }. In practice several

values of m are considered. If there is no prior information, the adjusted lag length

p is increased until the null hypothesis is not rejected.

We �rst recall the asymptotic behaviors of the LM and the portmanteau test

statistics under H0 (p = p0). In our cointegrated framework, these results are estab-

lished in Brüggeman et al (2006). Let us de�ne X̃t = (X ′
t−1β0,∆X

′
t−1 . . . ,∆X

′
t−p+1)

′.

We write:
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X̃t =
∞∑
i=0

ψ̃iϵ̃t−i,

where ϵ̃t = 1p⊗ϵt, 1p is the vector of ones of dimension p, the ψ̃i's are (r0+d(p−1))×

(r0 + d(p− 1)) dimensional, and can be obtained from the MA(∞) forms (2.2) and

(2.3). De�ne the residual autocovariances Γ̂(h) := T−1
∑T

t=1 ϵ̂tϵ̂
′
t−h and the vector of

the m �rst residual autocovariances γ̂m = vec
{
(Γ̂(1), . . . , Γ̂(m))

}
. We have

T
1
2

(
Im ⊗ Γ̂− 1

2 (0)⊗ Γ̂− 1
2 (0)

)
γ̂m ⇒ N

(
0, Id2m −KmK

−1
∞ K ′

m ⊗ Id
)
,

where

Km =


(1′

p ⊗ Σ
1
2
ϵ )ψ̃′

0

...

(1′
p ⊗ Σ

1
2
ϵ )ψ̃′

m−1

 (2.4)

is of dimension dm× (r0 + d(p− 1)) and

K∞ = E
(
X̃t−1X̃

′
t−1

)
=

∞∑
i=0

ψ̃i(1p ⊗ Σ
1
2
ϵ )(1

′
p ⊗ Σ

1
2
ϵ )ψ̃

′
i. (2.5)

The multivariate Box-Pierce portmanteau statistic introduced by Chitturi (1974)

for testing H0 vsH1 is given by:

QBP
m = T

m∑
h=1

tr
(
Γ̂′(h)Γ̂−1(0)Γ̂(h)Γ̂−1(0)

)
= T γ̂′m

(
Im ⊗ Γ̂−1(0)⊗ Γ̂−1(0)

)
γ̂m. (2.6)

We also consider the Ljung-Box statistic introduced in the VAR framework by Hosk-

ing (1980)

QLB
m = T 2

m∑
h=1

(T − h)−1tr
(
Γ̂′(h)Γ̂−1(0)Γ̂(h)Γ̂−1(0)

)
. (2.7)

It is clear that K∞ can be approximated by K ′
mKm as m → ∞, so that under the

null hypothesis the asymptotic distribution of the QBP
m and QLB

m statistics can be
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approximated by a χ2
d2(m−p+1)−dr0

for large enough m. Therefore at the asymptotic

level α the BP (resp. the LB) test rejects the null hypothesis if χ2
d2(m−p+1)−dr0,1−α <

QBP
m (resp. χ2

d2(m−p+1)−dr0,1−α < QLB
m ), where χ2

d2(m−p+1)−dr0,1−α is the (1 − α)th

quantile of the χ2
d2(m−p+1)−dr0

law with m > p. However it is well known that m

must be chosen carefully to make the portmanteau tests control the type I errors

reasonably well, and it is usual to take m→ ∞ as T → ∞.

The LM test may be viewed as based on the following model for the errors:

ϵt =
m∑
j=1

B0jϵt−j + et, (2.8)

where under the null hypothesis B0j = 0 for all j ∈ {1, . . . ,m}. The process (et) is

iid, with positive de�nite covariance matrix Σe. Let us de�ne Ĵ = T−1
∑T

t=1 ζ̂t−1ζ̂
′
t−1⊗

Γ̂(0)−1, with ζ̂t−1 = (X̃ ′
t−1, ϵ̂

′
t−1, . . . , ϵ̂

′
t−m)

′, taking ϵ̂t = 0 for t ≤ 0, and R =

(0d2m×d(r0+d(p−1)), Id2m) is of dimension d2m×(d2m+d(r0+d(p−1))). The nullity of

the B0i's is tested using the LM approach in the context of (2.1), so that we obtain

the LM test statistic:

QLM
m = T γ̂′m(Idm ⊗ Γ̂(0)−1)(RĴ−1R′)(Idm ⊗ Γ̂(0)−1)γ̂m. (2.9)

Under the null hypothesis we have QLM
m ⇒ χ2

d2m. Then at the asymptotic level α

the LM test reject the null hypothesis when χ2
d2m,1−α < QLM

m . Note that contrary

to the portmanteau tests, the LM test is not based on the approximation of the

asymptotic distribution.

In this part the asymptotic power properties of the above described tests is

studied. We consider the Bahadur (1960) approach which consists in compar-

ing the ability of the tests to detect a �xed alternative H1 : γm = ϱ ̸= 0 as
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T → ∞. For any x > 0, de�ne qLM(x) = − logP0(Q
LM
m > x) where P0 stands

for the limit distribution of QLM
m under H0. Let us consider the (asymptotic) slope

cLM(ϱ) = 2 limT→∞ T−1qLM(QLM
m ) under the alternative H1 : γm = ϱ ̸= 0 such

that the limit exists in probability. Similarly de�ne cBP (ϱ) and cLB(ϱ). We consider

the asymptotic relative e�ciencies of the test based on QLM
m with respect to the

tests based on QBP
m and QLB

m , as the ratios ARELM,BP (ϱ) = cLM(ϱ)/cBP (ϱ) and

ARELM,LB(ϱ) = cLM(ϱ)/cLB(ϱ). A relative e�ciency ARELM,LB(ϱ) ≥ 1 suggests

that the LM test is better suited to detect H1 than the LB test because the p−values

associated with the LM test wane faster or equally faster than the p−values obtained

using the LB test.

Proposition 1. Under assumption A1, the relative e�ciencies ARELM,LB(ϱ) and

ARELM,BP (ϱ) are larger or equal to 1 for every ϱ ∈ Rd2m.

Proof of Proposition 1 We only give the proof for the BP test for conciseness.

We have for any ϱ ̸= 0:

T−1QBP
m = ϱ′

(
Im ⊗ Σ−1

ϵ ⊗ Σ−1
ϵ

)
ϱ+ op(1), (2.10)

and

T−1QLM
m = ϱ′

(
Im ⊗ Σ

− 1
2

ϵ ⊗ Σ
− 1

2
ϵ

)(
Im ⊗ Σ

1
2
ϵ ⊗ Σ

− 1
2

ϵ

)
(RJ−1R′)

(
Im ⊗ Σ

1
2
ϵ ⊗ Σ

− 1
2

ϵ

)(
Im ⊗ Σ

− 1
2

ϵ ⊗ Σ
− 1

2
ϵ

)
ϱ+ op(1), (2.11)

using the ergodic theorem and the identity (K⊗L)(M⊗N) = (KM)⊗ (LN), with

J = E(ζt−1ζ
′
t−1)⊗ Σ−1

ϵ .
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Using the inverse of partitioned matrices and the above identity again we write:(
Im ⊗ Σ

1
2
ϵ ⊗ Σ

− 1
2

ϵ

)
(RJ−1R′)

(
Im ⊗ Σ

1
2
ϵ ⊗ Σ

− 1
2

ϵ

)
=(

Im ⊗ Σ
1
2
ϵ ⊗ Σ

− 1
2

ϵ

)(
Im ⊗ Σϵ ⊗ Σ−1

ϵ −KmK−1
∞ K ′

m ⊗ Σ−1
ϵ

)−1
(
Im ⊗ Σ

1
2
ϵ ⊗ Σ

− 1
2

ϵ

)
=

(
Id2m −

(
Im ⊗ Σ

− 1
2

ϵ

)(
KmK−1

∞ K ′
m

)(
Im ⊗ Σ

− 1
2

ϵ

)
⊗ Id

)−1

:= (Id2m − Ω)−1 , say.

Since Σe is positive de�nite, then Σϵ and K∞ are positive de�nite. As a consequence

Ω is positive semide�nite, and it follows that

δ′δ − δ′ (Id2m − Ω) δ ≥ 0,

where δ =
(
Im ⊗ Σ

− 1
2

ϵ ⊗ Σ
− 1

2
ϵ

)
ϱ, and

δ′δ − δ′ (Id2m − Ω)−1 δ ≤ 0. (2.12)

It is easy to check that qLM(x) = x/2{1 + o(1)} for large values of x, since the

asymptotic law of the LM test statistic is χ2
m with m ≥ 1. Similarly qBP (x) :=

− logP (χ2
d2(m−p+1)−dr0

> x) = x/2{1 + o(1)}. Then from (2.10), (2.11) and (2.12)

we have cLM(ϱ) > cBP (ϱ). �

From Proposition 1 it turns out that the LM test is asymptotically more powerful

than the portmanteau tests against linear alternatives. On the other hand Hatemi

(2004) and Brüggeman et al (2006) considered VAR alternatives in their Monte Carlo

experiments, and found some power advantages for the portmanteau tests. These

empirical results may appear surprising in view of (2.8) and Proposition 1. Such

paradoxical observations may be explained by the fact that the asymptotic advantage

is particulary noticeable when the J−1 matrix has high eigenvalues (see equation

(2.12)). In view of (2.4) and (2.5) this is likely to occur when m takes relatively

large values as J becomes close to a singular matrix in such a case. Nevertheless
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from (2.9) the LM test is also likely to lose the control of the type I errors for large

m. This is consistent with the fact that in the literature, it is advised to avoid the

LM test for large m. It is obvious that a test that has a good type I errors control

should be preferred to a more powerful test but with a bad control of the type I

error. Finally recall that when m is small, the LM test is found to control the type I

errors better than the portmanteau tests based on the χ2
d2(m−p) approximation (see

Hatemi (2004) and Brüggeman et al (2006)). In this case it is likely that J−1 has

relatively small eigenvalues, in such a way that the LM test is able to display good

size results, but also possibly some �nite sample power disadvantages. In the next

section we provide an illustration of the above discussion.

3 Numerical illustrations

In this part we give an illustration of the above discussion. To this aim we simulated

N = 1000 independent trajectories of the following process

∆Xt = Π0Xt−1 + Γ01∆Xt−1 + ϵt,

where

Π0 =


−0.2 0.2 0

0 −0.2 0.2

0 0 0

 , Γ01 =


0.5 −0.2 −0.2

−0.2 0.5 −0.2

−0.2 −0.2 0.5


and the errors are iid with ϵt ∼ N (0, Id). For each iteration the supremum of the

eigenvalues of the matrix RĴ−1R′ is computed under the null hypothesis. Note that

in our case since Σϵ = Id, we have RJ
−1R′ = (Id2m − Ω)−1. The medians over the

N = 1000 iterations are given in Table 1.

It can be seen that for large m the matrix Ĵ becomes di�cult to invert and
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unstable. In such a case it is well known that the LM test has to be avoided. On

the other hand if an alternative is �xed such that ϱ ≈ 0, we would obtain similar

results to those of Table 1. The term giving the theoretical power advantage of the

LM seems more limited for small m. In particular from the above section recall that

the critical values for the portmanteau tests are smaller than those of the LM test.

Following the simulation results of Hatemi (2004) and Brüggeman et al (2006), it is

likely that these observations lead to some �nite sample power advantages for the

portmanteau tests.

Table 1: The medians of the sup of the eigenvalues of RĴ−1R′.

T m = 1 m = 2 m = 3 m = 4 m = 5 m = 10

100 83.18 299.26 390.73 480.21 582.27 1532.76

200 103.10 441.52 539.65 585.50 676.91 1520.54

400 110.29 892.64 1066.968 1120.17 1165.65 2076.11
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