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Abstract

Despite a plethora of studies in monetary economics regarding the study of in�ation, interest
rates, stock returns, and velocity of money, a model that helps to jointly characterize these inter-
actions is still scarce in the literature. A key missing piece in most of the literature attempting
such a characterization is idiosyncratic precautionary money demand, which is prevalent in the
data. This paper presents a simple model where precautionary money demand arises due to het-
erogeneity in households' liquidity needs. In spite of its heterogeneous complexity, aggregation
in the model is straightforward, this is one of the main contributions of the paper, and therefore
an analysis of the models' implications can be undertaken when households' portfolio is com-
posed of cash, government bonds, and equity. The empirical analysis is conducted separately for
the time spans 1984.I-2007.IV and 2008.I-2019.IV. The model can capture important time-series
properties that a model without the idiosyncratic feature is unable to achieve. However, the
model falls short of providing an adequate match of some moments, especially in the second
sub-sample of the analysis.
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ernment bonds, Stock Market, Open market operations.
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1 Introduction

In general equilibrium monetary economics, there is an absence of model environments that

consider an array of �nancial assets such as cash, government bonds, and equity for households

while, incorporating precautionary money demand, which is prevalent in the data. Here I

propose one, which is a modi�ed version of the simplest Cash-in-Advance (CIA) model used in

early studies of monetary economics.

I build a model where heterogeneity is key to obtaining precautionary money demand, as indi-

viduals face uninsurable idiosyncratic shocks to their marginal utility of consumption - liquidity

shocks-, which realize after their portfolio decisions -between equity, government bonds, and

cash- are made. Because of the CIA constraint in place, only cash serves at this stage. Hence,

cash is held for precautionary motives that serve as a medium of exchange. The ex-post hetero-

geneity and the di�erent wealth accumulation patterns through time, do not pose a computa-

tional di�culty because under standard Constant-Relative-Risk-Aversion (CRRA) preferences,

the policy functions are linear in wealth and therefore aggregation is straightforward. These

methods of solution are similar to those developed by Samuelson [1969] and Merton [1969], or

more recently Angeletos [2007], Moll [2014] or Kiyotaki and Moore [2019], but were not ex-

ploited for the topic of interest. The application of this modeling feature to the CIA model with

idiosyncratic precautionary money demand is one of the main contributions of the paper.

The main objectives of this study are to show how precautionary money demand can be intro-

duced in a simple monetary model of the CIA type, and assess its empirical performance by

contrasting its time-series properties against the data. Earlier important contributions to the

CIA literature including Hodrick et al. [1991] and Giovannini and Labadie [1989] came short

of providing a valid empirical validation of the CIA setup. A missing feature in this literature
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was precisely the precautionary motive for money demand. Telyukova [2013] documents how

important this is in reality.

After the model is constructed, I calibrate it for the US at a quarterly frequency separately

for the periods 1984.I-2007.IV and 2008.I-2019.IV. The method of calibration includes - for

parameters that determine the dynamics of the model - a simulated method of moments. It

is shown how the model delivers a rich array of predictions regarding the interaction between,

in�ation, nominal and real interest rates, stock market returns, and the velocity of money. When

contrasted with the data, the model is favored in almost every dimension studied compared to

the same model, but where the idiosyncratic component is shut down. Especially important is

that the model can capture an important fraction of the variability of velocity and its correlation

with other variables. I also �nd that the model's performance is, in general, better in the �rst

sub-sample than in the second.

Related Literature

The model presented in this paper shares the heterogeneous feature of the class of heterogeneous

agent models under uninsurable idiosyncratic shocks. Many studies in the so-called "Bewley

tradition" (Bewley [1977]), for instance Hugget [1993], Aiyagari [1994], and Krusell and Smith

[1998], explored di�erent and important topics, but not precautionary money demand. Akyol

[2004] does consider precautionary motives in such models, but he uses a di�erent environment

and studies only the stationary equilibrium and the optimality of the Friedman rule, another

study along this line is Challe et al. [2017]. Although these papers consider shocks to income,

there is a substantial strand of the literature, including Lucas [1980], Taub [1988], Taub [1994],

Lucas [1992], and Atkenson and Lucas [1992], that consider shocks to the marginal utility of

consumption, which this paper introduces. None of these contributions study the e�ects of

introducing a precautionary motive in a monetary model. In addition, as mentioned before,
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simple aggregation is possible to obtain by applying insights from earlier literature, like Merton

[1969] and Samuelson [1969].

This paper contrasts the model's time series properties against the data. Several studies did

so, in many model environments. Boyle [1990] is an earlier contributor that investigates the

relationship between asset prices and velocity of money in general equilibrium with money in the

utility function, along these lines, Danthine and Donaldson [1986] study the relationship between

in�ation and asset prices, and a more recent contribution with this feature is Kraft and Weiss

[2019]. Variable money velocity has also been incorporated by Svensson [1985] in a representative

agent model, by adopting a timing convention where agents must decide on money holdings

before the revelation of aggregate shocks. Another earlier contribution focusing on precautionary

motives without incorporating idiosyncratic uncertainty is Giovannini [1989] who uses Svensson's

setup and adds time-varying return distributions for the state variables. Precautionary motives

arising due to information lags are also introduced by Lucas [1984]. As discussed by Hodrick et al.

[1991], these modi�cations were unsuccessful, quantitatively. A dimension on which Svensson

[1985] and Giovannini [1989] aimed to improve was the variability of velocity of money. While

their environments allowed for variability in this measure, upon careful calibration and empirical

evaluation, these models were quantitatively unsuccessful. Wang and Shi [2006] showed how a

framework with costly search, by focusing on the extensive margin, can be quite successful along

this dimension.

The closest previous works that incorporated precautionary money holdings in monetary models

to the best of my knowledge are that of Wen [2015] and Telyukova and Visschers [2013]. Wen

[2015] uses a related model to study the welfare cost of in�ation. Telyukova and Visschers [2013]

is similar because it puts at the forefront the issue of precautionary money demand and how

it helps to account for the observed interaction of real and nominal variables in the business
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cycle, including the relevance of the velocity of money. This paper di�ers substantially in the

type of model employed and the method of solution from both these important contributions.

Furthermore, this paper introduces government bonds, open market operations, and the stock

market which, is absent in their analysis.

The paper is organized as follows: Section 2 presents the model, Section 3 provides analysis and

development of the theoretical model, Section 4 develops the calibration of the model, while

Section 5 contrast the time series properties of the model with the data. Finally, Section 6

o�er concluding remarks. Appendix A describes the data for the empirical part of the paper,

while Appendix B present details of the modeling part including the Guess-and-Verify method

of solution employed.

2 The Model

The economy is populated by a measure one, of individuals with CRRA utility, indexed by i,

who maximize:1

E0

∞∑
t=0

θi,tβ
tu(ci,t), u(ci,t) =

c1−σ
i,t

1− σ
. (2.1)

θi,t is a preference shock. It is used to rationalize precautionary money demand related to

liquidity needs, and as such it will be termed "liquidity shock" henceforth. I assume n possible

cases with the following support:

θit ∈ {θ1, ..., θj, ..., θn}, (2.2)

1I want to thank professor Robert Lucas whose class notes on Monetary Theory were used with his permission
as a basis for the development of the current model. Related seminal contributions are Lucas [1980], Lucas and
Stokey [1983], and Lucas and Stokey [1987].
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with θj < θj+1, and probability Pr(θj) = χj, where
∑n

j=1 χj = 1, so these shocks are i.i.d.

over time and across individuals. E0 is the expectation operator that refers to the randomness

induced by these idiosyncratic and aggregate shocks to be explained later.

At the beginning of period t individuals have total nominal wealth Wi. The asset market opens

�rst, so agents decide on their portfolio. They choose to divide their wealth between equity

shares (Ei), nominal government bonds (Bi), and money (Mi).
2 They would move then to a

portfolio position satisfying:

Wi ≥ QeEi +QbBi +Mi. (2.3)

Qe and Qb are the dollar price of equity shares and one-period government bonds respectively.

An equity share is a claim to the nominal dividend stream Py at the end of the period. Where

P is the price level and y is the aggregate stochastic dividend to be speci�ed below. They make

this portfolio decision knowing all relevant state variables at that moment, except the liquidity

shock θi.

After the portfolio decision is made, agents discover their shock θi. The household thereafter

can be thought of as composed of two individuals, a producer, and a shopper, following Lucas'

metaphor. The producer collects the endowment and sells it, obtaining PEiy. The shopper

takes the money held from the beginning of the period and goes to the market to purchase the

2The notational convention used in most of the paper is the following: lower case letters without subindex
i will denote aggregate real variables and with subindex i individual variables. Upper case letters will denote
nominal variables, again with subindex i for individual variables and without it for aggregates. Next period
variables will be denoted with a prime.
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consumption good, spending Pci, subject to the cash-in-advance (CIA) constraint:3

Pci ≤Mi. (2.4)

At the beginning of the next period, equity shares can be sold at price Q′e, obtaining Q
′
eEi.

Agents will also carry to this period the cash from selling their endowment shares PEiy, and

redeem the government bonds purchased the last period Bi. There is also a possibility that

they will have some unspent cash Mi−Pci. Therefore, nominal wealth at the beginning of next

period is:

W ′
i = Q′eEi + PEiy +Bi +Mi − Pci. (2.5)

The timing of the model can be viewed in Figure 1.

Figure 1: Timing. Not all information is revealed simultaneously. At the beginning of the
period, households choose their portfolio Ei, Bi,Mi, without knowing the actual value of the
liquidity shock θi. When it is realized, households can use money to consume ci, subject to the
CIA constraint. At this stage, they also collect their dividends Eiy and sell them for cash at
price P .

3I am not aware of a way to solve this model, by expanding the set of consumption goods to include cash
and credit goods. As it will be clear in the next section, heterogeneity can be handled by imposing the strong
assumption that all consumption needs cash. Then, when households substitute against the use of money, they
will do so by substituting against consumption as well.
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Government

Government is introduced by assuming that it pays for the bond issuing money or issuing new

bonds:

Bs +Ms = M ′
s +Q′bB

′
s. (2.6)

Therefore, Open Market Operations (OMOs) are explicitly introduced.4 And aggregate money

supply follows:

M ′
s = (1 + γ′m)Ms, (2.7)

where γ′m is the rate of growth of money supply. The dividend y is assumed to growth at rate

γy:

y′ = (1 + γ′y)y. (2.8)

I assume that both γy and γm follow a joint stochastic process:

γ′y = γ̄y + ρy(γy − γ̄y) + ρym(γm − γ̄m) + ε′y (2.9a)

γ′m = γ̄m + ρm(γm − γ̄m) + ρmy(γy − γ̄y) + φ(x− x̄) + ε′m. (2.9b)

4This is in contrast to earlier literature in the CIA tradition where money is transferred directly to households.
As discussed in Akyol [2004], in representative agent models, lump-sum transfers of money and retiring existing
debt through open market operations are equivalent. However, in models with heterogeneous agents as this
one, an open market operation would impact the economy di�erently as there is a nondegenerate distribution of
agents with respect to bond holdings.
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In addition, the innovations follow:

 ε′y

ε′m

 ∼

 0

0

 ,
 σ2

y σym

σym σ2
m


 . (2.9c)

Hence, they are assumed to be of mean zero and variances σ2
y and σ

2
m respectively, with covariance

σym.

Speci�cation (2.9) is a vector autoregression for the growth rates of the dividend and money. γ̄y

and γ̄m are their steady state values, respectively. Equation (2.9b) has nominal debt over GDP

de�ned as x ≡ Bs/(Py) in deviation from its long-run value x̄. Because all money injections

are conducted via OMOs, an equation assuming φ = 0 will induce the model to display no

equilibrium with standard methods such as Blanchard and Kahn [1980]. Assume, for instance

an OMO, a negative ε′m, by which government sells government bonds and withdraws cash. φ > 0

ensures that if this OMO causes government bonds to surpass its long-run value next period, the

rate of growth of money will tend to increase, at least partially reverting the previous OMO. φ

measures how responsive is money growth to such deviations.5 In (2.9), unless ρym = σym = 0,

the economy is not a pure endowment one. In particular, monetary policy shocks may have real

e�ects on the dividend, although the actual channel of transmission is not modeled.

De�nition of Equilibrium

A competitive equilibrium is a sequence of price of equity, price of bonds, and price levels

{Qe,t, Qb,t, Pt}∞t=0, and a sequence of aggregate stochastic dividend and money supply {yt,Ms,t}∞t=0,

such that:

5Therefore, the assumption φ > 0 is important to ensure existence and uniqueness of the solution to the
model. However, if φ is too large, an implosion may occur in government bonds and the model will display no
solution. At a theoretical level, Lucas [1984] in section V on page 32, discusses the hardship of obtaining an
equilibrium in a related monetary model with government bonds and OMOs.
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1. Taking as given prices, ci,Mi, Bi, and Ei maximize individual's utility (2.1) subject to

(2.3), (2.4) and (2.5).

2. Government satis�es its budget constraint, equation (2.6).

3. The �nancial and goods market clear:

∫
Midi = Ms,

∫
Bidi = Bs,

∫
Eidi = 1,

∫
cidi = y. (2.10)

3 Analysis

For details on the method of solution employed and related proofs, please see Appendix B.

The individual's problem

I assume and later verify that demand of the di�erent assets are �across individuals� homoge-

neous fractions of their wealth:

Mi = zmWi, QbBi = zbWi, QeEi = (1− zb − zm)Wi. (3.1)

Where zm and zb are the shares of wealth in money and bonds, respectively. Using (3.1), and

dividing by the price level, it is possible to write (2.5) and (2.4) as:

w′i = R′wi −R′mci, ci ≤ zmwi, where R′ = R′e(1− zb − zm) +R′bzb +R′mzm. (3.2)

R′ is the return on the portfolio, a weighted average of the (gross) returns on the three assets:

R′e =

(
q′e +

y

1 + π′

)
1

qe
, R′b =

1

(1 + π′)Qb

, R′m =
1

1 + π′
, (3.3)
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for equity, bonds, and money, respectively.6 qe = Qe/P is the real price of equity and π is the

in�ation rate. Returns de�ned in (3.3) are standard. R′e includes the nominal dividend carried

from the previous period, which in real terms is y/(1+π′). Also, because Qb is the nominal price

of bonds, its inverse de�nes the nominal interest rate: 1/Qb = 1 + i. Then R′b = (1 + i)/(1 + π′)

is the real rate on bonds.

Households must choose �rst the portfolio allocation not knowing yet their liquidity shock.

Acting optimally, they consider the expected value of the shock in forming their optimal plans.

The Bellman equation is:

V(wi) = max
zm,zb

{
n∑
j=1

max
ci

[θju(ci) + βEV ′(w′i)]χj

}
, (3.4)

subject to (3.2).

The model is solved by �rst working out households decisions conditional on zm, zb and, on a

given liquidity shock, that is by working out �rst the inner maximization in (3.4). The FOC

reads:

θju
′(ci) ≥ βEV ′w(w′i)R

′
m, j = 1, ..., n. (3.5)

With strict inequality if the CIA is binding. When the CIA is slack, there is a balance between

the marginal utility of consumption and the discounted expected marginal value of wealth.

In a �rst-order approximation, we can see the in�uence of the in�ation rate. The higher the

future in�ation rate, the lower the expected return on cash, the more current consumption

tends to rise. This occurs because consumption is paid with cash, and if the expected in�ation

increases, current consumption becomes cheaper. Most important, when θj is high, the desired

6In de�ning returns, we used the notational convention that, for example, R′
e is the gross real return on

equity, the net return will be denoted r′e = R′
e − 1. This notational convention di�ers from that de�ned in

footnote 2.
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consumption also increases, and it is more likely that CIA constraint binds. Idle balances, absent

in original CIA models, will arise when (3.5) is satis�ed with equality. For these individuals, their

cash holdings chosen at the beginning of the period are ex-post large relative to the liquidity

shock they get, so it does not pay to deplete their cash holdings and therefore reduce real wealth

next period by a large amount.

To make progress in the solution of the model, a Guess-and-Verify strategy is employed for the

value function:

V(wi) = ψ
w1−σ
i

1− σ
. (3.6)

Where ψ is an unknown stochastic variable whose process will be determined later.

We will assume from the outset that only individuals who receive the highest shock θn will

satisfy their CIA constraint with equality, and for them (3.5) is satis�ed with strict inequality.7

Let ci,j be the policy function for agent i facing shock θj and w′i,j the associated next period

wealth, then Appendix B shows that:

ci,j = (1− ζj)zmwi, w′i,j = R′jwi j = 1, ..., n. (3.7)

With ζj = 0 for j = n and:

R′j = R′e(1− zb − zm) +R′bzb +R′mζjzm, j = 1, ..., n, (3.8)

is de�ned as the return on the portfolio after consumption. ζj on the other hand is a choice

variable for the household, the savings rate out of cash. ζn is zero, meaning that CIA binds for

7It is natural to assume that only individuals that receive a relatively high liquidity shock, will bind their
CIA constraint. That only those facing the highest shock are assumed to do so, is related to the calibration of
this shock as shown in section 4. There, it is going to be shown that only 7% of individuals �that we will see
correspond to the ones facing the highest shock� will deplete their cash holdings.
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all agents facing the highest shock. All agents for which ζj > 0, will have idle balances which

will be subject to the in�ation cost re�ected in R′m. ζj > 0 is optimally chosen as to satisfy

(3.5), which is �using the functional form for u(·) and the guess in (3.6)�:

θj[(1− ζj)zm]−σ = βEψ′(R′j)−σR′m, j = 1, ..., n− 1. (3.9)

Policy functions in (3.7) are conditional on given θj. Households need to consider these to plan

ex-ante when choosing zm and zb. The FOC with respect to zm in (3.4) is:

n∑
j=1

θjuc(ci,j)
∂ci,j
∂zm

χj = βE
n∑
j=1

V ′w(w′i)
∂R′j
∂zm

χjwi, (3.10)

where uc(·) and V ′w(·) are the derivatives of the respective functions and:

∂R′j
∂zm

= R′e −R′m
(
ζj +

∂ζj
∂zm

zm

)
, j = 1, ..., n− 1.

∂R′j
∂zm

= R′e, j = n. (3.11)

Equation (3.10) says that the expected marginal utility of cash �expected marginal utility

services� is equal in the optimum to the expected discounted marginal cost. This cost is the

induced change in lifetime value due to, choosing a more liquid portfolio in the margin, which

foregoes the return on equity. If there are expected idle balances, however, these might obtain

a return when carried for the next period, that is what the second term in the �rst equality in

(3.11) is expressing. Note that in this computation, households consider how should ζj change

with changes in zm, which is obtained using the Implicit Function Theorem in (3.9), from which

I obtain:

∂ζj
∂zm

=
θjz
−(σ+1)
m (1− ζj)−σ + βEψ′(R′j)−(σ+1)R′m (R′e − ζjR′m)

θj(1− ζj)−(σ+1)z−σm + βEψ′(R′j)−(σ+1)(R′m)2zm
. (3.12)
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The FOC with respect to zb in (3.4) is:

n∑
j=1

θjuc(ci,j)
∂ci,j
∂zb

χj = βE
n∑
j=1

V ′w(w′i)
∂R′j
∂zb

χjwi, (3.13)

where:

∂R′j
∂zb

= R′e −R′b −R′m
∂ζj
∂zb

zm, j = 1, ..., n− 1.
∂R′j
∂zb

= R′e −R′b, j = n. (3.14)

The LHS in (3.13) shows the expected marginal utility of bonds, which is still measuring liquidity

services. In (3.10), consumption ci,j changes both because it is in�uenced by zm directly and,

because zm in�uences ζj (for j < n). In (3.13) ci,j changes only indirectly through the change

in ζj. So agents consider an expected change in idle balances that a portfolio with more bonds

may enable. The discounted expected marginal cost now is in�uenced by the potential gain for

carrying bonds to the future with return R′b, and as before, with positive idle balances, these

might carry a positive return when not used for consumption and carried to the next period.

The savings rate out of cash is in�uenced by zb and it can be obtained again by the Implicit

Function Theorem from (3.9) as:

∂ζj
∂zb

=
βEψ′(R′j)−(σ+1)R′m(R′e −R′b)

θj(1− ζj)−(σ+1)z−σm + βEψ′(R′j)−(σ+1)(R′m)2zm
. (3.15)

Using the functional form for u(·) and the guess in (3.6), the FOC for zm in (3.10) is:

n−1∑
j=1

θj[(1− ζj)zm]−σ
(

1− ζj −
∂ζj
∂zm

zm

)
χj + θnz

−σ
m χn − βEψ′

n∑
i=1

(R′j)
−σ ∂R

′
j

∂zm
χj = 0. (3.16)

14



Likewise, the FOC for zb in (3.13) is:

n−1∑
j=1

θj[(1− ζj)zm]−σ
(
−∂ζj
∂zb

zm

)
χj − βEψ′

n∑
j=1

(R′j)
−σ ∂R

′
j

∂zb
χj = 0. (3.17)

The value of ψ still needs to be determined. The Appendix B shows that the Guess-and-Verify

method gives:

ψ =
n∑
j=1

θj[(1− ζj)zm]1−σχj + βEψ′
n∑
i=1

(R′j)
1−σχj, (3.18)

a recursion that determines ψ.

3.1 Aggregation

One of the virtues of the model developed is that all policy functions are linear in the relevant

state and hence is straightforward to aggregate individuals in the economy. Aggregating the

policy functions (3.7):

c ≡
∫
ci,jdi =

n∑
j=1

(1− ζj)χjzmw, w′ ≡
∫
w′i,jdi =

n∑
j=1

R′jχjw. (3.19)

Where w is aggregate real wealth. Regarding the demand of the assets of the economy, it is

possible to go back to (3.1) taken in real terms to �nd aggregate demands:

∫
midi ≡ m = zmw,

∫
bidi ≡ b =

zb
Qb

w,

∫
Eidi ≡ E =

1− zb − zm
qe

w, (3.20)

which gives us the aggregate money demand, aggregate bonds demand, and aggregate equity

demand, respectively.
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3.2 Government

Recall that equation (2.6) describes the budget constraint of government. We can divide this

equation by the price level and use the de�nition of in�ation to get:

bs +ms = (1 + π′) (m′s +Q′bb
′
s) , (3.21)

where bs = Bs/P and ms = Ms/P . Money creation in (2.7) can likewise be expressed in real

terms as:

m′s =
1 + µ′

1 + π′
ms. (3.22)

The monetary growth rule (2.9b) can also be written with x expressed as x = bs/y.

3.3 Velocity of money

In this model, a simple expression is available for velocity of money. By de�nition of velocity, we

have that ϑ ≡ Py/M . From the �rst equation in (3.19), and imposing goods market clearing:

ϑ ≡
n∑
j=1

(1− ζj)χj. (3.23)

Hence, how sensitive is velocity to �uctuations in dividends, interest rates, and so on, is deter-

mined on the di�erent ζj. In the special case where with no idiosyncratic liquidity shocks (for

instance, let all agents receive the same liquidity shock θj = θ, for all j) there is no precaution-

ary money demand and ζj = 0 for all j. In this case (3.23) gives ϑ =
∑n

j=1 χj = 1, a constant

velocity. This clearly shows the importance of heterogeneity in the model to account for the
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variability of velocity that we observe in the data.

4 Calibration

4.1 Parameters pertaining the steady state

Important parameters are calibrated using the steady state of the model, which is explained in

more detail in Appendix B.2. An important process to calibrate is the liquidity shock, agents

are being bu�eted continuously with this shock even in steady state.8 I assume that there are

n = 5 possible states for this shock. So there are ten parameters to calibrate: χ1, ..., χ5 and

θ1, ..., θ5. The process of calibration is simpli�ed by assuming that there is an underlying process

for the liquidity shock with a continuous log-normal distribution:

ln θi ∼ N (0, σ2
θ). (4.1)

Then we discretize this process using Tauchen's method for n = 5 states (Tauchen [1986]).

Because the process for the liquidity shock was assumed �by necessity for the application

of the law of large numbers and aggregation� i.i.d., the probabilities of the �ve states are

[0.07, 0.24, 0.38, 0.24, 0.07], independent of the value of σ2
θ . Since we assumed that only the

highest shock individuals are cash-constrained, this implies that 7% of agents deplete their cash

holdings in each period. This accords well with the evidence of Telyukova and Visschers [2013].

8The steady state is non-stochastic at the aggregate level, but there is randomness at the individual level.
Because a notion of non-stochastic steady state is considered for aggregates, in this situation the returns to
all assets are the same. In this case, however, because of the assumption of a closed economy, there is no
indeterminacy in portfolio allocations as these are given by the supply side. Money supply will grow at an
exogenous rate and the government budget constraint will determine the supply of government bonds. Given
households' wealth, the complement of their portfolio holdings will determine equity holdings. In open economy
settings, the issue is more complicated, see for example Evans and Hnatkovska [2012].

17



Parameters that in�uence the steady state of the system are therefore only three: β, σ, and σ2
θ .

In the non-stochastic steady state both Re and Rb need to be the same, this rate labeled R

satis�es:9

R̄ ≡ 1 + γ̄y +
1

(1 + π̄)¯̂qe
=

1 + ī

1 + π̄
. (4.2)

Equations determining optimal saving rates are:

θj[(1− ζ̄j)z̄m]−σ = βψ̄R̄−σj R̄m, j = 1, ..., n− 1. (4.3a)

Optimality of zm:

n−1∑
j=1

θj[(1− ζ̄j)z̄m]−σ
(

1− ζ̄j −
∂ζ̄j
∂z̄m

z̄m

)
χj + θnz̄

−σ
m χn − βψ̄

n∑
i=1

R̄−σj
∂R̄j

∂z̄m
χj = 0. (4.3b)

The value for ψ̄:

ψ̄ =

∑n
j=1 θj[(1− ζ̄j)z̄m]1−σχj

1− β
∑n

i=1 R̄
1−σ
j χj

. (4.3c)

Government budget constraint:

z̄b(1 + ī) + z̄m = (1 + π̄)(z̄m + z̄b)(1 + γ̄y). (4.3d)

Goods market clearing equation:

(1− z̄b − z̄m) =
n∑
j=1

(1− ζ̄j)χj z̄m ¯̂qe. (4.3e)

This is the strategy for calibration: First, γ̄y and γ̄m are taken from the data. In this case,

equation (B.26) in Appendix B.2 also gives us the in�ation rate π̄. Second, I take an average

9As explained in Appendix B.1, variables with "hats" denote the variable normalized by the dividend y that
grows continuously. Variables with a "bar" denote the steady state value.
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of the returns on equity and bonds to get R̄. Then, equations (4.2) deliver ī and ¯̂qe. Equations

(4.3) then form a system of 8 equations for the unknowns. ζ̄1, ζ̄2, ζ̄3, ζ̄4, z̄m, z̄b, ψ̄ and σ2
θ .

Finally, while β could have been set to an exogenous value, I found that the solution to the

non-linear system of equations is easier to obtain if β is set to target how many times the value

of consumption is held as precautionary money balances in the data, this measure is given by∑n
j=1 ζ̄jχj in the model. In the literature, there is a wide variation in this empirical measure. For

example, Telyukova [2013] �nds that the median household holds liquid assets in the order of 1.5

times the expenditure in consumption. However, for those households that borrow, this value

falls to only 0.1.10 A shortcoming of the data in her study for our purposes is that it excludes

currency. Attanasio et al. [2002] for example, �nd for Italian data that currency holdings as a

fraction of consumption is only in the order of 0.05. Hence, I set the target to a relatively low

value of 0.25, to not arti�cially overemphasize the precautionary motive. Finally, I will perform

the analysis for di�erent values of σ.

The data used in this study and for calibration is described in Appendix A. I calibrate the model

for a quarterly economy. In addition, I divide the whole analysis in the periods 1984.I−2007.IV

and 2008.I − 2019.IV throughout. This choice is made because of the e�ects of the Great

Recession in both the asset markets and monetary policy in the latter period. As we will see, the

time series properties of many variables appear to have changed indeed. For the �rst sub-sample,

the values for the rate of growth of consumption and money are, γ̄y = 0.005 and γ̄m = 0.013

respectively, then in�ation is π̄ = 0.008. Also, returns on bonds and equity are R̄b = 0.002 and

R̄e = 0.022 respectively, then R̄ = 0.012. For the second sub-sample, I obtain γ̄y = 0.002 and

γ̄m = 0.015 respectively, then in�ation is π̄ = 0.013. For this sub-sample, returns on bonds and

equity are R̄b = −0.006 and R̄e = 0.017 respectively, then R̄ = 0.006.11 Table 1 shows the rest

10See Table 8 on page 1158. She uses the Survey of Consumer Finances and the Survey of Consumer Expen-
ditures for the US for the period 2000-2002.

11In the empirical exercises below, I found that it matters little for average returns, whether I consider an
equity premium by performing second or third-order approximations. Resolving the equity premium puzzle is
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of the parameters and variables found by solving the non-linear system of equations (4.3) as

explained before. As can be seen in the table, for high values of σ, the calibrated value of β

is higher than one. This unusual odd value for "impatience" has been shown by Kocherlakota

[1990] that is perfectly compatible with equilibrium in endowment economies. In the table (and

the others that follow), we also present results for a model where the idiosyncratic shock is shut

down. We assume that a single, representative agent faces only the highest liquidity shock, and

therefore the CIA constraint always binds. These cases are presented under column RA in the

tables. To distinguish from this case, in the tables, we show the results for the model developed

with heterogeneity under the label HA, for heterogeneous agents.

4.2 Parameters involving dynamics

As for parameters involved in the dynamics of the model, those are given by the eight that

parameterize the process (2.9):

Γ = [ρy, ρym, σy, ρm, ρmy, σm, σym, φ]. (4.4)

In related previous studies, it was common to estimate the equivalent to process (2.9) directly

using time series data for M2 and non-durable consumption expenditures for m and y respec-

tively, see for example Hodrick et al. [1991] or Wang and Shi [2006] in a model with production.

In our setup, however, because OMOs are considered explicitly, government bonds over GDP x

in�uence money growth in equation (2.9b), and then the whole model economy is intertwined

with the process (2.9). While in principle empirical measures for x could be proxied, it is unclear

how to treat the potential bias that could arise by endogeneity issues or other biases that may

still an elusive matter. Early discussions on this issue in related models can be found in Backus et al. [1989] and
Jerman [1998].
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Table 1: Calibrated parameters and variables found in steady state

σ = 1 σ = 2 σ = 3
Parameter HA RA HA RA HA RA

A. 1984:I-2007:IV

β 0.993 0.993 0.997 0.997 1.002 1.002

σ2
θ 0.265 - 0.395 - 0.526 -

θ1 0.589 - 0.454 - 0.349 -

θ2 0.768 - 0.674 - 0.591 -

θ3 1.000 - 1.000 - 1.000 -

θ4 1.303 - 1.484 - 1.693 -

θ5 1.697 1.697 2.203 2.203 2.865 2.865

z̄m 0.009 0.007 0.009 0.007 0.009 0.007

z̄b 0.016 0.013 0.016 0.013 0.016 0.013
¯̂qe 135.460 135.460 135.460 135.460 135.460 135.460
¯̂w 138.989 138.199 138.989 138.199 138.989 138.199

ψ̄ 1.4E+02 2.3E+02 2.0E+04 4.2E+04 2.8E+06 3.6E-04

B. 2008:I-2019:IV

β 0.997 0.997 0.999 0.999 1.001 1.001

σ2
θ 0.252 - 0.383 - 0.514 -

θ1 0.604 - 0.465 - 0.358 -

θ2 0.777 - 0.682 - 0.598 -

θ3 1.000 - 1.000 - 1.000 -

θ4 1.287 - 1.466 - 1.672 -

θ5 1.657 1.657 2.150 2.150 2.795 2.795

z̄m 0.004 0.003 0.004 0.003 0.004 0.003

z̄b 0.019 0.014 0.019 0.014 0.019 0.014
¯̂qe 284.240 284.240 284.240 284.240 284.240 284.240
¯̂w 290.929 289.431 290.929 289.431 290.929 289.431

ψ̄ 3.0E+02 4.8E+02 8.7E+04 1.8E+05 2.0E-04 1.2E-04

Notes: Obtained steady state values by solving the system (4.3) for di�erent σ. Under columns HA,
it is shown results for the heterogeneous agent model developed. A similar system of equations for the
representative agent case in which, all agents face θ5 with certainty is shown under column RA. Panel A
shows results for the period 1984.I-2007.IV while Panel B presents results for the period 2008.I-2019.IV.
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occur by estimating only a part of the model economy. We chose then to use the model itself

to calibrate Γ. Let the empirical moments to target be (here T denotes the transpose of the

vector):

M = [corr(γ′y, γy), corr(γ
′
y, γm), sd(γy), corr(γ

′
m, γm), corr(γ′m, γy), sd(γm), corr(γy, γm)]T , (4.5)

which are directly related to variables in (2.9). Let M(Γ) be the equivalent model-simulated

moments.12 Then Γ is calibrated in such a way as to:

min
Γ

[M −M(Γ)]T [M −M(Γ)]. (4.6)

The calibration is again performed for the two sub-samples considered. Calibrated parameters

for the process (2.9) are presented in Table 2. The table shows how these calibrated parameters

change across sub-samples. These changes, of course, re�ect variations in the actual targeted

moments (4.5). Table 3 shows how these targeted moments di�er across sub-samples. There

are even changes in the sign of correlations, such as the autocorrelation of dividend growth

corr(γ′y, γy), and the contemporaneous correlation of growth of dividend with the growth of

money corr(γy, γm). The table also shows that for each sub-sample the procedure of calibration

gives close model-simulated moments to their empirical counterparts.

12These moments depend on all parameters of the model, not only those on (4.4), but we make this explicit on
Γ as these will be the parameters to be calibrated in this stage. The simulated moments are obtained by solving
the linearized system of rational expectations displayed in equations (B.22) in Appendix B.1, using Blanchard
and Kahn [1980] methods. I used Dynare for such purpose.
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Table 2: Calibrated parameters with moment matching

σ = 1 σ = 2 σ = 3
Parameter HA RA HA RA HA RA

A. 1984:I-2007:IV

ρy -0.0275 -0.0275 -0.0275 -0.0275 -0.0275 -0.0275

ρym -0.0796 -0.0728 -0.0728 -0.0606 -0.0809 -0.0782

σy 0.0038 0.0034 0.0034 0.0034 0.0040 0.0036

ρm 0.3606 0.1873 0.3238 0.2097 0.3141 0.2243

ρmy -0.3761 -0.2936 -0.4152 -0.3705 -0.3758 -0.2703

σm 0.0042 0.0036 0.0040 0.0045 0.0042 0.0036

σym 0.0715 0.0795 0.0724 0.0765 0.0738 0.0793

φ 0.1218 0.1053 0.0931 0.0870 0.0916 0.1033

B. 2008:I-2019:IV

ρy 0.2326 0.2326 0.2326 0.2326 0.2326 0.2326

ρym -0.1986 -0.1952 -0.1949 -0.1996 -0.1999 -0.1999

σy 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029

ρm 0.3740 0.0831 0.3124 0.2232 0.3176 0.2518

ρmy -0.2381 0.0345 -0.1480 -0.1287 -0.1549 -0.2201

σm 0.0057 0.0049 0.0059 0.0054 0.0059 0.0053

σym 0.0123 0.0143 0.0120 0.0131 0.0119 0.0133

φ 0.0806 0.0447 0.0216 0.0337 0.0167 0.0353

Notes: Calibrated parameters according to (4.6) for di�erent values of σ. Under columns HA, it
is shown the results for the heterogeneous agent model developed. The same objective function
and empirical targets were used for the representative agent version of the model, results for
which are presented in columns labeled RA. Panel A shows calibrated parameters for the period
1984.I-2007.IV while Panel B presents results for the period 2008.I-2019.IV.
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Table 3: Targeted moments and model's performance

σ = 1 σ = 2 σ = 3
Variable Data HA RA HA RA HA RA

A. 1984:I-2007:IV

corr(γ′y, γy) -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

corr(γ′y, γm) -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105

sd(γy) 0.003 0.004 0.003 0.003 0.003 0.004 0.004

corr(γ′m, γm) 0.284 0.284 0.284 0.284 0.284 0.284 0.284

corr(γ′m, γy) -0.268 -0.268 -0.268 -0.268 -0.268 -0.268 -0.268

sd(γm) 0.005 0.005 0.005 0.005 0.006 0.005 0.005

corr(γy, γm) 0.037 0.037 0.037 0.037 0.037 0.037 0.037

B. 2008:I-2019:IV

corr(γ′y, γy) 0.299 0.299 0.299 0.299 0.299 0.299 0.299

corr(γ′y, γm) -0.440 -0.440 -0.440 -0.440 -0.440 -0.440 -0.440

sd(γy) 0.003 0.003 0.003 0.003 0.003 0.003 0.003

corr(γ′m, γm) 0.360 0.360 0.360 0.360 0.360 0.360 0.360

corr(γ′m, γy) -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125

sd(γm) 0.007 0.007 0.007 0.007 0.007 0.007 0.007

corr(γy, γm) -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165

Notes: This table shows the empirical moments M (all data is logged and HP �ltered) in the
�rst column and the calibrated momentsM(Γ), according to (4.6), in the rest of the columns for
di�erent values of σ. Under columns HA, it is shown the results for the heterogeneous agent model
developed. The same objective function and empirical targets were used for the representative
agent version of the model, results for which are presented in columns labeled RA. Panel A shows
calibrated parameters for the period 1984.I-2007.IV while Panel B presents results for the period
2008.I-2019.IV.
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5 Time series properties of the model

In this section, I make an empirical assessment of the model by examining its time series im-

plications. Focusing on standard deviations, correlations, and autocorrelations. As mentioned

before, the data used is described in Appendix A.

5.1 Volatility

I start with Table 4 that shows standard deviations of some variables. The volatility of velocity

is an important variable to look at because typical models in the CIA tradition were disregarded

based on its counterfactual lack of variability. In the data, which is logged and HP �ltered

throughout, we �nd that the standard deviation is between 0.014 and 0.016 depending on the

sub-sample. As can be seen in the �rst row of both panels, the model can capture between 30 and

70 % of that variability. This comes in stark contrast with the RA model, where the volatility

of velocity is null as the CIA always binds. The model is also quite successful to capture the

volatility of the interest rate i, and the net (ex-post) real rate rb. For these variables, even

the RA model performs quite successfully. As for the volatility of the net return on equity re,

the model fails by a large margin. Finally, the model can capture quite well the volatility of

in�ation, which is perhaps surprising due to the lack of price rigidities in the model. The RA

model for this variable does not perform as well as the model with idiosyncratic liquidity shocks.

5.2 Correlations

Table 5 shows di�erent correlations among variables of the model. In general, the performance

of the model is satisfactory for the �rst sub-sample and less so for the second sub-sample. Let
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Table 4: Standard deviations

σ = 1 σ = 2 σ = 3
Variable Data HA RA HA RA HA RA

A. 1984:I-2007:IV

sd(ϑ) 0.014 0.007 0 0.005 0 0.004 0

sd(i) 0.003 0.001 0.003 0.001 0.004 0.002 0.003

sd(rb) 0.004 0.004 0.005 0.004 0.006 0.005 0.005

sd(re) 0.052 0.004 0.004 0.004 0.004 0.005 0.004

sd(π) 0.003 0.004 0.006 0.004 0.007 0.005 0.006

B. 2008:I-2019:IV

sd(ϑ) 0.016 0.011 0 0.008 0 0.004 0

sd(i) 0.001 0.001 0.005 0.002 0.004 0.002 0.004

sd(rb) 0.005 0.004 0.007 0.005 0.008 0.007 0.010

sd(re) 0.060 0.003 0.003 0.004 0.005 0.006 0.007

sd(π) 0.005 0.004 0.008 0.005 0.008 0.006 0.008

Notes: The table presents standard deviations for velocity, the nominal interest rate, the
real rate (rb = (1+ i)/(1+π)−1), and the return on equity (re = Re−1). The �rst column
shows (logged) HP data statistics and the rest of the columns show theoretical moments for
di�erent values of σ. Under columns HA, it is shown the results for the heterogeneous agent
model developed. The model statistics for the representative agent version of the model is
presented in columns labeled RA. Panel A shows moments for the period 1984.I-2007.IV
while Panel B presents moments for the period 2008.I-2019.IV.
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me divide the discussion for both sub-samples.

Sub-sample 1984.I-2007.IV

The low correlation of velocity with consumption growth and money growth (−0.01 and −0.14,

respectively) is captured by the model with low σ. The correlation of velocity with the nominal

interest rate is quite high in the data (0.73) and the model predicts a perfect correlation. The

model predicts this as portfolio allocations at the beginning of the period are frictionless, and

agents react instantly to movement in the nominal rate. However, a high correlation among

these variables, a desirable feature for a monetary model, is very di�cult to obtain in older

literature in the CIA tradition. The correlation of velocity with the real interest rate is 0.29 and

lower in the model, but the low correlation of velocity with the real return on equity is close

to the data. The correlation of velocity with in�ation in the model is close to the data as well

(0.24 in the data and between 0.15 and 0.20 in the model).

Correlation of in�ation with consumption growth is overstated in the model (−0.32 and around

−0.9 in the model), this is one of the few instances that the RA model performs somewhat

better. The correlation of in�ation with money growth is completely missed by the model and

by the RA case. The correlation of in�ation with the nominal interest rate is captured well by

the model (in the data is 0.26 and the model gives values in the range of 0.15 and 0.20), while

the RA case overstates it. The correlation of in�ation with the real interest rate is also close to

the data. The correlation of in�ation with the return on equity is captured in the sign, but it

is overstated in the model. This negative relationship was documented in the literature before,

see for example Geromichalos et al. [2007].

Finally, we examine the correlation of the return on equity with several variables.13 While

13Among previous papers that examined the relationship between the growth of money and asset prices is the
work of Carmichael [1989]. Later literature that considered the stock market in their model environments such
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the sign of the correlation of return on equity with consumption growth is correct, the model

overstates it. This correlation is 0.21 in the data and close to unity in the model, also in the RA

case. The correlation of return on equity with money growth is well captured for low levels of

risk aversion, for the case σ = 1 the model gives 0.04, almost matching the 0.06 in the data. The

correlation of return on equity with the real interest rate is overstated, but the sign is correct.

The data gives a low correlation of 0.15, while the model gives correlations close to one. The RA

model again performs somewhat better for this case, giving correlations around 0.40. Finally,

the correlation of return on equity with the nominal interest rate is e�ectively captured by the

model. The data for this correlation is −0.04 and the model for σ = 1 gives −0.03. Here, the

RA gives values very di�erent to the data.

Sub-sample 2008.I-2019.IV

For this sub-sample, the performance of the model is much less satisfactory, in general. Although

still, the correlation of velocity with some variables is already an improvement over the RA

model. We can notice that the correlation of velocity with consumption growth is captured

well for relatively high values of risk aversion (in the data the correlation is 0.30 and the model

delivers 0.33 for σ = 3). The correlation of velocity with money growth is closer to the data

again for high values of risk aversion. The correlation of velocity with the nominal interest

rate is lower in the data for this sub-sample (0.59 versus 0.73 for the previous sub-sample), but

still quite high, and the model predicts a perfect correlation. The correlation of velocity with

both the real interest rate and return on equity are not matched now by the model. Data gives

correlations of −0.27 and −0.12 respectively while the smallest correlations in the model are

0.11 and 0.18 respectively for the σ = 1 case. The correlation of velocity with in�ation only

comes somewhat close for the case σ = 1.

as Hodrick et al. [1991], omitted the examination of its empirical properties.
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The correlation of in�ation with consumption growth is almost absent in the data while it is

strongly negative in the model. The same thing happens in the RA model. The opposite occurs

with the correlation between in�ation and money growth which is negative in the data and quite

strongly positive in the model. The correlation between in�ation and the nominal interest rate

appears to come close to the data only for low levels of risk aversion (the correlation in the data

is 0.35 and the model for the σ = 1 case gives 0.18). The strong, negative correlation of in�ation

and the real interest rate in the data is captured quite well by the model. The correlation

between in�ation and the return on equity is a complete miss, the data shows quite a strong

positive correlation and is negative in the model.

The correlation of the return on equity and consumption growth is low and positive in the data,

0.12. The model predicts, in general, a stronger association, the lowest being 0.68 for σ = 3.

The correlation of the return on equity and money growth is quite well captured by the model,

especially for high levels of risk aversion. For example, the data shows −0.58 for this correlation,

and for σ = 2 the model delivers −0.59. The correlation of the return on equity with the real

interest rate is strongly negative in the data and strongly positive in the model, so again, we

have a miss. Finally, the data shows a lack of correlation between the return on equity and the

nominal interest rate, and the model comes close only for low values of risk aversion. The data

shows −0.02 for this correlation, while the model gives 0.11 for σ = 1.

5.3 Persistence

Table 6 shows autocorrelations for some variables of the model. First, the autocorrelation of

velocity is quite well captured by the model in the �rst sub-sample and less so in the second

sub-sample. The autocorrelation of the nominal interest rate is well captured, especially in the

�rst sub-sample. The autocorrelation of the real interest rate is well captured for high relative
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Table 5: Correlations

σ = 1 σ = 2 σ = 3
Variable Data HA RA HA RA HA RA

A. 1984:I-2007-IV

corr(ϑ, γy) -0.01 -0.02 0 -0.08 0 -0.13 0

corr(ϑ, γm) -0.14 -0.10 0 -0.03 0 -0.07 0

corr(ϑ, i) 0.73 1.00 0 1.00 0 1.00 0

corr(ϑ, rb) 0.29 0.06 0 0.10 0 0.10 0

corr(ϑ, re) -0.09 -0.03 0 -0.05 0 -0.06 0

corr(ϑ, π) 0.24 0.15 0 0.21 0 0.20 0

corr(π, γy) -0.32 -0.97 -0.56 -0.90 -0.48 -0.89 -0.59

corr(π, γm) -0.21 0.16 0.81 0.36 0.86 0.40 0.79

corr(π, i) 0.26 0.15 0.59 0.21 0.55 0.20 0.46

corr(π, rb) -0.73 -0.98 -0.83 -0.95 -0.84 -0.95 -0.86

corr(π, re) -0.19 -0.97 -0.55 -0.91 -0.57 -0.92 -0.71

corr(re, γy) 0.21 1.00 1.00 0.99 0.99 0.98 0.96

corr(re, γm) 0.06 0.04 0.05 -0.02 -0.07 -0.07 -0.14

corr(re, rb) 0.15 0.97 0.40 0.92 0.39 0.92 0.55

corr(re, i) -0.04 -0.03 -0.40 -0.05 -0.45 -0.06 -0.42

B. 2008:I-2019-IV

corr(ϑ, γy) 0.30 0.11 0 0.09 0 0.33 0

corr(ϑ, γm) -0.12 -0.02 0 0.03 0 -0.31 0

corr(ϑ, i) 0.59 1.00 0 1.00 0 1.00 0

corr(ϑ, rb) -0.27 0.18 0 0.26 0 0.58 0

corr(ϑ, re) -0.12 0.11 0 0.21 0 0.54 0

corr(ϑ, π) 0.34 0.18 0 0.08 0 -0.39 0

corr(π, γy) -0.04 -0.92 -0.55 -0.69 -0.56 -0.64 -0.56

corr(π, γm) -0.38 0.42 0.91 0.81 0.91 0.80 0.91

corr(π, i) 0.35 0.18 0.52 0.08 0.21 -0.39 -0.27

corr(π, rb) -0.99 -0.93 -0.82 -0.94 -0.91 -0.98 -0.93

corr(π, re) 0.60 -0.92 -0.54 -0.91 -0.88 -0.95 -0.87

corr(re, γy) 0.12 1.00 1.00 0.83 0.76 0.68 0.68

corr(re, γm) -0.58 -0.17 -0.15 -0.59 -0.67 -0.64 -0.69

corr(re, rb) -0.63 0.96 0.50 0.95 0.95 0.97 0.94

corr(re, i) -0.02 0.11 -0.19 0.21 0.16 0.54 0.59

Notes: The table presents correlations for di�erent variables. The �rst column shows
(logged) HP data statistics and the rest of the columns show theoretical moments for
di�erent values of σ. Under columns HA, it is shown the results for the heterogeneous
agent model developed. The model statistics for the representative agent version of the
model are presented in columns labeled RA. Panel A shows moments for the period
1984.I-2007.IV while Panel B presents moments for the period 2008.I-2019.IV.
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risk aversion in the �rst sub-sample and overstates it in the second sample. For example, in the

�rst sub-sample, the autocorrelation is 0.16 and is 0.13 in the model for σ = 3. For the second

sub-sample, the correlation is 0.20 but in this case, the smallest model value is 0.40 for σ = 1,

the RA case performs somewhat better with 0.27 for this case.

The autocorrelation of the return on equity is low, 0.10 in the �rst sub-sample and very low but

negative in the model. In the second sub-sample, this correlation is 0.28 in the data, and the

model captures it quite well for σ = 1, giving 0.30.

The autocorrelation of in�ation in the �rst sub-sample is captured very well for low values of risk

aversion in the �rst sub-sample (the model exactly matches this correlation of 0.02 for σ = 1)

and overstates it in the second sub-sample (the data shows a value of 0.19 and the closest value

in the model is 0.41 for σ = 1). The RA case in both sub-sample misses this autocorrelation by

a large margin.

6 Concluding remarks

In this paper, I developed a model where precautionary motives in money demand are central

and are embedded in an otherwise standard monetary model in the Cash-in-Advance tradition.

The model is constructed in such a way as to incorporate relevant heterogeneity in terms of how

individuals decide on their portfolio allocations. This was accomplished by assuming that indi-

viduals face idiosyncratic "liquidity shocks", that induce them to hold precautionary balances

and to produce a rich array of decisions regarding their portfolio allocations, when the economy

undergoes di�erent shocks.

The model was used to contrast its time series properties against the data for the US in the
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Table 6: Autocorrelations

σ = 1 σ = 2 σ = 3
Variable Data HA RA HA RA HA RA

A. 1984:I-2007-IV

corr(ϑ′, ϑ) 0.89 0.88 0 0.88 0 0.84 0

corr(i′, i) 0.90 0.88 0.82 0.88 0.78 0.84 0.70

corr(r′b, rb) 0.16 0.03 0.30 0.09 0.30 0.13 0.31

corr(r′e, re) 0.10 -0.03 -0.03 -0.05 -0.04 -0.05 -0.03

corr(π′, π) 0.02 0.02 0.37 0.09 0.38 0.10 0.36

B. 2008:I-2019-IV

corr(ϑ′, ϑ) 0.74 0.92 0 0.95 0 0.84 0

corr(i′, i) 0.64 0.92 0.97 0.95 0.94 0.84 0.78

corr(r′b, rb) 0.20 0.40 0.27 0.60 0.42 0.69 0.45

corr(r′e, re) 0.28 0.30 0.29 0.67 0.60 0.74 0.67

corr(π′, π) 0.19 0.41 0.51 0.64 0.51 0.71 0.51

Notes: The table presents autocorrelations for di�erent variables. The �rst column
shows (logged) HP data statistics and the rest of the columns show theoretical moments
for di�erent values of σ. Under columns HA, it is shown the results for the heterogeneous
agent model developed. The model statistics for the representative agent version of
the model,is presented in columns labeled RA. Panel A shows moments for the period
1984.I-2007.IV while, Panel B presents moments for the period 2008.I-2019.IV.
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periods 1984.I-2007.IV and 2008.I-2019.IV. That partition of the sample was guided by the

potential e�ects of the Great Recession in shaping interactions in the �nancial variables in the

macro-economy, including the e�ects of nontraditional monetary policy. In both samples, the

model with heterogeneity delivers an improvement over almost all dimensions compared to a

representative agent model where this type of heterogeneity is absent.

Overall, adding the precautionary motive to the CIA model, helped to account for volatility,

correlations, and persistence of several variables traditionally taken into account when studying

the performance of monetary models. The proposed model, however, cannot account for many

moments examined. Importantly, the model performs markedly better in the �rst sub-sample

than in the second. Therefore, this paper presents prima facie evidence that �nancial and

macro-variables have su�ered an important change that is re�ected in their interactions since

the Great Recession. In this regard, given the evidence found that a model of the type developed

here is unable to capture many time series properties in the later period, future work could focus

on incorporating nontraditional monetary policy in a similar framework. This is left for future

work.
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A The Description of the data

Construction of the dividend series and the data equivalent to y, is done as follows. I took

data from the BEA (Bureau of Economic Analysis). Table 2.3.5 presents personal consumption

expenditures and table 2.3.4 presents the correspondent price indexes. Non-durable goods ex-

penditures are divided by its price index. The same is done for the series services, and the data

equivalent to y is constructed by the sum of the two divided by the population level (CNP16OV)

taken from FRED (Federal Reserve Economic Data).

To obtain the price level, nominal consumption is constructed as the sum of expenditures on non

durable goods plus services taken from table 2.3.5 of BEA, and divided by the data equivalent

to y constructed as explained above.

The monetary aggregate is considered M2, this series is usually used in empirical studies for its

alleged stationarity, see for example Hodrick et al. [1991], Wang and Shi [2006], and Telyukova

and Visschers [2013]. I took M2 from the FRED database.

Velocity is constructed by dividing nominal total consumption as the sum of expenditures on

non-durable goods plus services taken from table 2.3.5 of BEA divided by M2.

The monetary aggregate used equals M2 divided by the population level (CNP16OV) taken

from FRED. This series is used to construct the data equivalent to γm.

For nominal interest rates, I take the 3-Month Treasury Bill: Secondary Market Rate.

Finally, the series for the return on equity are constructed using (real) stock prices and dividends

from Robert Shiller's database taken from http://www.econ.yale.edu/ shiller/data.htm. For

more information, see Robert Shiller [1989].
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B Solving the model: a Guess-and-Verify approach

The objective is to solve the problem (3.4) under (3.2). Let λj be the multiplier on the CIA

constraint in (3.2), then the Lagrangian for the inner problem in (3.4) can be de�ned as:

L(wi, θj) = θju(ci) + βEV ′(w′i) + λj(zmwi − ci), (B.1)

where w′i = R′wi−R′mci as de�ned in (3.2). The Karush-Khun-Tucker conditions for maximiza-

tion are:

θju
′(ci) = βEV ′w(w′i)R

′
m + λj (B.2)

λj(zmwi − ci) = 0, ci ≤ zmwi, λj ≥ 0. (B.3)

(B.2) is the FOC with respect to consumption and (B.3) are the complementary slackness

conditions. With the Lagrangian (B.1), the Bellman equation in (3.4) is:

V(wi) = max
zm,zb

n∑
j=1

L(wi, θj)χj. (B.4)

At the beginning of each period, households choose zm and zb, the FOC's are:

zm :
n∑
j=1

[
θjuc(ci)

∂ci
∂zm

+ βEV ′w(w′i)
∂w′i
∂zm

]
χj = 0 (B.5a)

zb :
n∑
j=1

[
θjuc(ci)

∂ci
∂zb

+ βEV ′w(w′i)
∂w′i
∂zb

]
χj = 0. (B.5b)

Finally, the Envelope Condition is:

Vw(wi) = β
n∑
j=1

EV ′w(w′i)χjR
′ +

n∑
j=1

λjzmχj. (B.6)

35



Using the de�nition of R′ the envelope condition can be written as:

Vw(wi) = β
n∑
j=1

EV ′w(w′i)χj[R
′
e(1−zb−zm)+R′bzb]+β

n∑
j=1

EV ′w(w′i)χjR
′
mzm+

n∑
j=1

λjzmχj. (B.7)

Then, multiplying equation (B.2) by zmχj, and summing over j, we get:14

β

n∑
j=1

EV ′w(w′i)χjR
′
mzm =

n∑
j=1

θju(ci)zmχj −
n∑
j=1

λjzmχj. (B.8)

In addition, by using (B.8), we can write (B.7) as:

Vw(wi) =
n∑
j=1

θju(ci)zmχj + β
n∑
j=1

EV ′w(w′i)χj[R
′
e(1− zb − zm) +R′bzb]. (B.9)

This version of the Envelope Condition will be important later on, in the veri�cation step of the

Guess-and-Verify solution.

To solve the model the guess (3.6) is used along with the guess for the policy function for

consumption:

ci,j = (1− ζj)zmwi. (B.10)

Under these guesses, the FOC (B.2) is:

θj[(1− ζj)zm]−σw−σi = βEψ′(R′j)−σR′mw−σi + λj. (B.11)

Proposition 1. Under the guess for the value function (3.6) and (B.10), household's assets

demands are homogenous fractions of their wealth.

14Note that V ′
w(w′

i) does depend on j as w′
i is a function of ci, which depends on θj .
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Proof. The idea is to show that optimal values of zm and zb do not depend on wealth wi. Note

that using the policy (B.10), wealth next period equals w′i = R′jwi where R
′
j is de�ned as in

(3.8). With these results, the FOC's in (B.5) are written as:15

n∑
j=1

{
θj[(1− ζj)zmwi]−σ

∂(1− ζj)zm
∂zm

wi + βEψ′(R′jwi)−σ
(
−R′e +R′m

∂ζjzm
∂zm

)
wi

}
χj = 0

(B.12)
n∑
j=1

{
θj[(1− ζj)zmwi]−σ

∂(1− ζj)
∂zb

zmwi + βEψ′(R′jwi)−σ
(
−R′e +R′b +R′m

∂ζj
∂zb

zm

)
wi

}
χj = 0.

(B.13)

We can see in these equations that wi can be canceled out from both. We must show that ζj

does not depend on wi either, but this is straightforward. First, when the CIA binds, then we

know that ζj = 0. For those cases where ζj > 0, equation (B.2) (in which λj = 0), can be

written from (B.11) as:

θj[(1− ζj)zm]−σ = βEψ′(R′j)−σR′m. (B.14)

This equation shows, that ζj does not depend on wi.

Proposition 2. The stochastic process for ψ in (3.6) is given by:

ψ =
n∑
j=1

{
θj[(1− ζj)zm]1−σ + βEψ′(R′j)1−σ}χj. (B.15)

Proof. This step amount to the veri�cation of the Guess for the value function in (3.6). For

this, we use (B.4). Note that when the CIA binds, the complementary slackness conditions (B.3)

imply that λj(zmwi − ci) = 0, then (B.4) is satis�ed as:

V(wi) =
n∑
j=1

{
θj

[(1− ζj)zmwi]1−σ

1− σ
+ βEψ′

(R′jwi)
1−σ

1− σ

}
χj. (B.16)

15Here, the bar over the product of variables such as (1− θj)zm, denotes the vinculum.
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Making explicit the value function in the LHS of this equation and factorizing terms:

ψ
w1−σ
i

1− σ
=

{
n∑
j=1

[
θj(1− ζj)1−σz1−σ

m + βEψ′(R′j)1−σ]χj} w1−σ
i

1− σ
. (B.17)

Note that because of previous results, none of the terms in braces in (B.17) depend on wi.

Therefore, the guess is validated equating ψ to the term in braces, which gives equation (B.15),

the same as equation (3.18) in the text.

Finally, we go to the veri�cation step for the policy function for consumption. This step is

necessary because two guesses have been employed, one for the value function and the other for

the policy function for consumption. We need to check, if under all these guesses, the Envelope

Condition (B.9) is satis�ed.

Replacing in (B.9) the guesses and using equation (3.8):

Vw(wi) =
n∑
j=1

θj[(1− ζj)zmwi]−σzmχj + β
n∑
j=1

Eψ′(R′jwi)−σ(R′j −R′mζjzm), (B.18)

which equals:

ψw−σi =

{
n∑
j=1

θj[(1− ζj)zm]−σzmχj + β
n∑
j=1

Eψ′(R′j)1−σχj − β
n∑
j=1

Eψ′(R′j)−σR′mζjzmχj

}
w−σi .

(B.19)

Eliminating w−σi from both sides, we have:

ψ =
n∑
j=1

θj[(1− ζj)zm]−σzmχj + β

n∑
j=1

Eψ′(R′j)1−σχj −
n∑
j=1

θj[(1− ζj)zm]−σζjzmχj. (B.20)

Where in the last term I used (B.14) and the fact that ζj = 0 when CIA binds. We can group
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the �rst and the third term in the last equation to get:

ψ =
n∑
j=1

{
θj[(1− ζj)zm]1−σ + βEψ′(R′j)1−σ}χj. (B.21)

which replicates (B.15) and therefore the guesses employed are internally consistent.

B.1 The system

Here I collect the relevant equations of the model. Some need to be normalized as the endowment

y perpetually grows even in steady state, these normalized variables will be denoted with a "hat".

Returns from equations (3.3) are:

R′e =

[
q̂′e(1 + γ′y) +

1

1 + π′

]
1

q̂e
, R′b =

1

(1 + π′)Qb

, R′m =
1

1 + π′
. (B.22a)

Portfolio returns after consumption, from (3.8), are:

Rj = R′e(1− zb − zm) +R′bzb +R′mζjzm, j = 1, 2, ..., n. (B.22b)

Changes in this return when zm, and zb change, from (3.11) and (3.14):

∂R′j
∂zm

= R′e −R′m
(
ζj +

∂ζj
∂zm

zm

)
, j = 1, ..., n− 1.

∂R′j
∂zm

= R′e, j = n. (B.22c)

∂R′j
∂zb

= R′e −R′b −R′m
∂ζj
∂zb

zm, j = 1, ..., n− 1.
∂R′j
∂zb

= R′e −R′b, j = n. (B.22d)
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The change in saving rates when zm and zb change, from (3.12) and (3.15):

∂ζj
∂zm

=
θjz
−(σ+1)
m (1− ζj)−σ + βEψ′(R′j)−(σ+1)R′m (R′e − ζjR′m)

θj(1− ζj)−(σ+1)z−σm + βEψ′(R′j)−(σ+1)(R′m)2zm
(B.22e)

∂ζj
∂zb

=
βEψ′(R′j)−(σ+1)R′m(R′e −R′b)

θj(1− ζj)−(σ+1)z−σm + βEψ′(R′j)−(σ+1)(R′m)2zm
. (B.22f)

Equations determining optimal saving rates, from (3.9):

θj[(1− ζj)zm]−σ = βEψ′(R′j)−σR′m, j = 1, ..., n− 1. (B.22g)

Optimality of zm, from (3.16):

n−1∑
j=1

θj[(1− ζj)zm]−σ
(

1− ζj −
∂ζj
∂zm

zm

)
χj + θnz

−σ
m χn − βEψ′

n∑
i=1

(R′j)
−σ ∂R

′
j

∂zm
χj = 0. (B.22h)

Optimality of zb, from (3.17):

n−1∑
j=1

θj[(1− ζj)zm]−σ
(
−∂ζj
∂zb

zm

)
χj − βEψ′

n∑
j=1

(R′j)
−σ ∂R

′
j

∂zb
χj = 0. (B.22i)

The recursion for ψ, from (3.18):

ψ =
n∑
j=1

θj[(1− ζj)zm]1−σχj + βEψ′
n∑
i=1

(R′j)
1−σχj. (B.22j)

Government budget constraint, from (3.21):

(
zb
Qb

+ zm

)
ŵ = (1 + π′)(z′m + z′b)ŵ

′(1 + γ′y). (B.22k)

Money creation, from (3.22):

z′mŵ
′(1 + γ′y) =

1 + µ′

1 + π′
zmŵ. (B.22l)
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Goods market clearing, using the last equation in (2.10) and the �rst equation in (3.19):

1 =
n∑
j=1

(1− ζj)χjzmŵ. (B.22m)

Equity market clearing, from the equity market in equations (2.10) and the last equation in

(3.20):

q̂e = (1− zb − zm)ŵ. (B.22n)

The system is closed with the stochastic processes for money and the dividend growths in (2.9).

Note that the variable x can be written as: x = zbŵ/Qb. Mechanically speaking, under some

parametrization, equations (B.22g) to (B.22n) for a system of 11 equations in the unknowns:

q̂e, π,Qb, zm, zb, ψ, ŵ, ζ1, ..., ζ4.

B.2 The steady state

In this section, I present the model's analysis for the steady state where all aggregate shocks are

muted, but idiosyncratic shocks continuously bu�et agents. This will be helpful to understand

the workings of the model and also helpful for the model's calibration.

In the (aggregate) non-stochastic steady state the rate of returns on both bonds and equity

must be the same R̄e = R̄b. This is con�rmed by examining equations (B.22i) and (B.22f), such

a rate will be denoted R̄. The �rst two equations in (B.22a) at steady state, therefore, yield to

equation (4.2) in the text.

After consumption returns are from (B.22b):

R̄j = R̄(1− z̄m) + R̄mζ̄j z̄m, j = 1, 2, ..., n. (B.23)
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Changes in the portfolio return with changes in z̄m, from (B.22c):

∂R̄j

∂z̄m
= R̄− R̄m

(
ζ̄j +

∂ζ̄j
∂ζ̄m

z̄m

)
, j = 1, ..., n− 1

∂R̄j

∂z̄m
= R̄, j = n. (B.24)

The change in saving rates when z̄m and z̄b change, from (B.22e) and (B.22f):

∂ζ̄j
∂z̄m

=
θj z̄
−(σ+1)
m (1− ζ̄j)−σ + βψ̄(R̄j)

−(σ+1)R̄m

(
R̄− ζ̄jR̄m

)
θj(1− ζ̄j)−(σ+1)z̄−σm + ψ̄(R̄j)−(σ+1)(R̄m)2z̄m

,
∂ζ̄j
∂z̄b

= 0. (B.25)

Equations determining optimal saving rates are given from (B.22g), in steady state, in equations

(4.3a) in the text.

Optimality of zm and the value of ψ from (B.22h) and (B.22i) are given in equations (4.3b) and

(4.3c) in the text.

Government budget constraint from (B.22k) in steady state is given by equation (4.3d) in the

text. Money growth equation, from (B.22l) in steady state is given by:

1 + γ̄y =
1 + γ̄m
1 + π̄

. (B.26)

Finally, the goods market clearing equation (B.22m) and equity market clearing (B.22n) can be

used to eliminate ¯̂w and get the equation (4.3e) in the text.

B.2.1 An intuitive explanation

Here I use the model in steady state to give an intuitive explanation about the workings of

the model using equations (4.3a) and (B.23). I illustrate households' decisions in the second
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subperiod, where they choose ζ̄j. Equation (B.23) can be written as:

R̄m(1− ζ̄j)z̄m + R̄j = R̄(1− z̄m) + R̄mz̄m. (B.27)

Note that the term (1 − ζ̄j)z̄m is consumption per unit of wealth, so this equation says how

"income" R̄(1− z̄m) + R̄mz̄m is allocated among two "goods": consumption per unit of wealth

and the return on the portfolio after consumption R̄j. The price of consumption is R̄m because

a higher in�ation rate will lower the price of current consumption as future consumption needs

to be paid with cash. Equation (4.3a) then gives then a familiar relationship in price theory

(here allowing for a binding CIA constraint):

θj
βψ̄

[
(1− ζ̄j)z̄m

R̄j

]−σ
≥ R̄m, (B.28)

which states that the Marginal Rate of Substitution (MRS) is greater or equal to the price of

consumption. When CIA binds then this equation is satis�ed with strict inequality. Figure 2

shows the budget constraint (B.27). The curve C1 shows an "indi�erence curve" yielding an

interior solution in which (B.28) is satis�ed with equality. This will happen when the liquidity

shock is relatively low, or when β and ψ̄ are relatively high. The intuition is straightforward.

A low liquidity shock induces individuals to hold cash for the future, and they substitute con-

sumption in favor of a higher return R̄j. A high liquidity shock induces households to bind their

CIA constraint in which ζ̄j = 0, this will correspond to an "indi�erence curve" C2 in the �gure.

Higher patience or more valuation for next period wealth (higher β or ψ̄) induce individuals to

substitute consumption towards more cash for next period.

43



Figure 2: When MRS equals R̄m, households choose an interior optimum in which cash is stored for

the next period. When MRS is higher than R̄m, households will choose to deplete all cash purchasing

consumption, in that case, the CIA binds.
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